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Abstract

This research paper determines a formula for the number of subgroups of the dihedral groups D{n}. |
created the operation tables and lattice of subgroups for D(3) through D{8)}. After creating the lattice of
subgroups | determined the elements of D(n) that generate each subgroup of D{n). This led to the
formula S,, = r(n) + a(n), where S, represents the number of subgroups of D{n), 7(n) represents the
number of positive divisors of n, and o(n) represents the sum of the positive divisors of n. Students in a
secondary classroom will be asked to investigate the symmetries of various figures, the permutation of

the figures vertices, and the composition of those permutations.

Keywords: {Dihedral Group D(n), T(n), a(n), S, Permutations, Subgroups}
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This research paper will discuss the number of subgroups for each dihedral group D(n), n 2 3.
The focus in the mathematics of this project is to use basic geometry, group theory and number theary
to investigate and develop a formula for the number of subgroups of D{n}. In order to visualize the
permutations of D{n), | will show first, using basic geometry, that each permutation corresponds to a
tigid motion (or combination of rigid motions) of a regular n-sided polygon. Group Theory will be used to
investigate/explore the number of subgroups of D(n} for n up to 8. Finally, number theory will be used

to develop a formula for the number of subgroups of D(n).

I will begin this paper by focusing upon the background information of D{n). The second section
of this paper will focus on the development of a formula that outputs the number of subgroups of D{n)
based on the number of sides of a related polygon. The representation of D(3) through D(8) will include
a picture of each of the related polygons for the dihedral groups D(n), the composition tables and the
lattice of subgroups for D{n). | will include a clear description of how | obtained the formula, proof, and
extensions for the number of subgroups of D{n). This paper will conclude with a description of how D(n}
can be utilized in a secondary classroom. Since abstract algebra is not a topic primarily focused upon in
secondary education, this section will contain a lesson in which students will be asked to determine the
symmetries/permutations of various figures. During this lesson students will be introduced to the
definition of line of symmetry, rotational symmetry, and composition. Students will be given various
figures and asked to list all of the symmetries for each. Next, students will create a system to list the
permutations of certain regular polygons. The target learning goal of this lesson is for students to
identify the combination of permutations that yield the identity of each figure. The extension of this
lesson will be for students to relate the permutations of a two-dimensional figure to a three-

dimensional figure.
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Background Information

In order to better understand the permutations of D(n) it is imperative that we understand what
the dihedral groups D(n) are, as well as what they represent. According to Pinter, “For every positive
integer nz3, the regular polygon with n sides has a group of symmetries symbolized by D{n}. These
groups are called the dihedral groups” (Pinter, 1990). The group of symmetries of a square is
symbolized by D(4), and the group of symmetries of a regular pentagon is symbolized by D{5}, and so on.
In fact, every plane figure that exhibits regularities, also contain a group of symmetries (Pinter, 1990}.
The groups of symmetries are defined by permutations which preserve distance between every two
points. (Bhattacharya, Jain, & Nagpaul, 1994). By definition, “The group of symmetries of a regular
polygon P, of n sides is called the dihedral group of degree n and denoted by P{n)” (Bhattacharya, .Jain,

& Nagpaul, 1994).

This project will make use of the definition that all of the permutations for each of the dihedral
groups D{n} preserve the cyclic order of the vertices of each regular n-gon. This demonstrates the
relationship between the abstract concept of D{n} and the rigid motions of a regular n-gon. From this, |

will denote the rotation symmetry for each of the regular n-gons of 27” {clackwise) as p, the reflection

symmetry as 8, and the original n-gon as &. For example, in the following diagram the identity of the

square () is the square in which each vertex and side is matched. Since a square has 4 sides, the
rotation p is equal to %’E which is a 90° clockwise rotation, p? is equivalent to a 180° clockwise rotation,
p? is equivalent to a 270° clockwise rotation, and p*is equivalent to a 360° clockwise rotation which is
equivalent to the identity £. @ can be noted as the reflection about the vertical fine which passes
through the center of the square (as seen below), p8 can be noted as the line of symmetry which passes

through the vertices 2 and 4, p“# can be noted as the horizontal line of symmetry which passes through
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the center of the square, and p*8 can be noted as the line of symmetry which passes through the

vertices 1 and 3.
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In order to identify all of the subgroups of the dihedral group D{n) it is essential to understand
the definition of a subgroup. According to Pinter, a subgroup is defined by, “Let D{n} be a group, and 5
be a nonempty subset of D{n). If the operation of every pair of elements of S is contained in S, we say
that S is closed with respect to that operation. Also, if the inverse of every element of Sisin §, then we
say that S is closed with respect to inverses. If both of these are true then we call S a subgroup of D{n})"

{Pinter, 1990).
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The Dihedral Group D(n)

{ will begin this section by describing what each dihedral group D(n) represents. | will define the
notation used to create each group D{n), the operation tables, and the fattice of the subgroups for each

n. From this, the formula that outputs the number of subgroups of the dihedral group D(n) will be

conjectured.

As described in the background information, the two types of symmetries that regular polygons
have are rotational symmetry and line symmetry. Each of the rotational symmetries will be fabeled as
the powers of p, each line of symmetry will be labeled as the powers of p times &, and & will represent

the original regular polygon such that the vertices are in their original circular order. Each of the dihedral

groups will be represented in this paper using this notation.

To determine the number of subgroups of D(n) and the process to derive the formula | will
identify representations for each dihedral group D{n). This includes a) a picture of the regular polygons,
b) the elements contained in the group D{n}, c) the operation table, and d) the lattice of the subgroups
for each D{n). The operation tables define all of the symmetry operations. The operation tables are
used to identify the closure of a set; subsequently, identifying all of the subgroups. The lattices of the
subgroups begin with the entire group D(n) and will branch to each subgroup that is a subset {or
contained) in the group connected above until it reaches the identity £. The representation for a

clockwise rotation of a regular triangle, p, will be represented as ;gi) or1-»2, 2->3 and 3> 1. The

aforementioned notation will be used for each dihedral group B{n}.
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The Collection of the Number of Subgroups of Dihedral Group D(n)

Number of Subgroups of D(n)
6

10
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16
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2] ~f )} v F- wl o=
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Now that D(3) through D(8), along with their subgroups have been described, | will now
investigate the mathematics behind creating a formula that outputs the number of subgroups for D{n).
The formula was contrived through trial and error while | was trying to generate the list of subgroups of
D{n). I quickly noted that D(n) will always contain the subgroup D(n), the subgroup ¢, and the subgroups
generated by p® where g are the positive divisors of n. If k is relatively prime to n then no additional
subgroups can be generated by p*. Modular arithmetic demonstrates that a relatively prime number
will generate every number contained in the set created by mod(n); therefore, each subgroup

corresponds to a factor of n.

t will investigate the subgroups for D{4) and D{8). It is noted for D{4) that the factors of 4 are 1,2,
and 4. The subgroups of D{4) are as follows;
{Ds}{p. 0% % e} {p* €}, {e}, {p%,6,p%8, €}, (p* 06, p*6, €}, {6, €}, {p, €}, {p?8, £}, {p?6, £}. | will break
these subgroups into two groups: a) subgroups that only contain rotations and b) subgroups that

contain reflections.

a) Looking at the three subgroups which contain rotations of the square; p will generate the
subgroup only containing rotations generated by a 90° clockwise rotation, p:" will generate the

subgroup of rotations generated by a 180° clockwise rotation, and p” (or €) will generate the last
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subgroup that is generated by a 360° clockwise rotation. Thus | can conjecture that the number
of subgroups of D(4) that only contain rotations is equivalent to the number of factors of 4.

b) | will now investigate the subgroups that contain rotations and reflections. The subgroup
generated by p and 8 will produce the the entire group D{n). The subgroup generated by p’and
0 will produce {p?, 8, p?0, £}. The subgroup generated by p* and p8 will
produce {p?, pd, p38, £}. The subgroups generated by p° or € and each individual reflection are
{6,e3,{p8, €},{p?6, e}, and {p?8, £}. All things considered, | am able to conjecture that the
number of subgroups of D{4} is equivalent to 3+1+2+4. This is equivalent to the number of

factors of 4 plus each factor of 4.

Now that | have investigated the number of subgroups for D(4), D{8) will be explored where
there are a total of 19 subgroups. Throughout this section | will examine two categories of subgroups: aj
subgroups that only contain rotations and b} subgroups that contain reflections. Identifying how each

subgroup of D(8) is generated will reveal the formula that outputs the number of subgroups of D(8}.

a} In D(8} the subgroups that only contain rotations are
{p,p%,0% 0% p% 0% 07, €, {p* p* p® ¢}, {p* €} and {e}. The subgroup
{p,p2,p3, p* pS, pb, p7, €} represents the subgroup of rotations generated by p, {p? p* p% &}
is the subgroup of rotations that is generated by p?%, {p*, £} is the subgroup of rotations that is
generated by p*, and {&} is the subgroup that is generated by p? or the identity. The importance
of this section is to realize that D(8) has four subgroups that only contain rotations. Notice that
eight has four factorsof 1, 2, 4 and 8.

b) The subgroups that contain both rotations and reflections are

(Dg} {02 0", 0%, 6,28, p*6, p°0, €3, {p?, p*, p®, 08, %0, 050,076, €3, {p*, 6, p%6, &}, {p*, p8,p°0, €},
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{p* 020,056, €}, {p* p*6,p76,53,(0,£},{p0, £}, {020, £}, {06, £}, (p*6, €}, {p°0, £}, {p®0, £}, and {p” 8, £}.
Similar to the rotations, | will focus on the subgroups along with their reflections that are
generated by p, p?, p*, and p®. The subgroup {p?, p*, 0%,6,p?6,p*8, p°0, £} is generated by
p? and 8 and {p2, p*, p®, p8, p6, p°6, 078, £} is the subgroup that is generated by p” and p6.
Notice that p? generates two subgroups that contain reflections. Thé subgroup {p%,8,p*0, ¢} is
generated by p? and 8, {p*, p8, p58, €} is the subgroup that is generated by p* and p#,

{p*, p?6, p58, £} is the subgroup that is generated by p* and p?8, and {p*, p?6, p” @, £} is the
subgroup that is generated by p* and p*8. Thus, p* will generate four subgroups that contain
reflections. The remaining subgroups that contain reflections and the identity are

(8, €}, {p8, £}, {p?6, £}, {p36, €}, {p*6, £}, {p°6, €}, {p%8, e}, and {p” 6, £}. Notice that p® will
generate eight subgroups that contain reflections. This section demonstrates that D(8) is
equivalent to 4+1+2+4+8 which results in 19 total subgroups. Therefore, the number of

subgroups of D{8) is equal to the number of factors of eight plus each factor of eight.

Throughout this section | will refer to each lattice of D(n})’s subgroups to validate my conjecture
S, will represent the number of subgroups of D{n). The number of subroups for D(3) is represented as 5.
The collection of subgroups of D(n) demonstrates that S; is 6 and the factors of 3 are 1 and 3, then S5 is
2+3+1, or 6 total subgroups. Similarly, D(5) has 8 subgroups, and my conjecture states that S5 = 2+1+5,
or 8 total subgroups. The formula that determines the number of subgroups of D(n) is gleaned from the

fattice of subgroups, as is reflected in the table below.

n | Number of Subgroups of D(n) S,

3 6 2+3+1

4 10 3+142+4
5 8 2+1+5

6 16 4+1+2+3+6
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7 10 2+1+7

8 19 441+2+4+8

As stated earlier, the symmetries of any regular n-sided polygons are the elements of D(n}, and
the subgroups of D(n). The function which determines the number of subgroups of D{n) will utilize 7 and
o. By definition, “Given a positive integer n, let 7(n) denote the number of positive divisors of n, and
o(n) denote the sum of these divisors” (Burton, 1976). For example, the number 14 has the positive
divisors 1, 2, 7, and 14 which means 7{14)=4 and (14} = 1 + 2 + 7 + 14 = 24; consequently, Si4is

equal to four plus twenty four.

The reader’s reflection should be, “Does this formula work for every dihedral group D{n)?”

The Fundamental Theorem of Arithmetic states, If n = pl}fip;<2 pif" is the prime factorizationofn > 1,

then the positive divisors of n are precisely those integers d of the form d = pilpgz p?r, where 0 € %
k,({i=1,2,..., r) stands. This implies that if d is a divisor of n, then d will generate the subgroup of rotations
p?, p2?, . &, asubgroup of D(n). From this we can determine the number of subgroups of D{n). Let's
begin by determining the value for S,,. The factorsof 24 are 1, 2, 3, 4, 6, 8, 12, and 24. The prime
factorization of 24 is 2°3%; thus, 24 has (3+1){1+1) = 8 positive factors, implying that D{24) has eight
subgroups that contain only rotations. The sum of the factorsis 1+ 24+ 3+ 4+ 6 +8+ 12+ 24 =

56 = g(24), implying that D(24) has 56 subgroups that contain reflections; therefore, 5,4 = 7(24) +

o(24) = 8 + 56 = 64. D(24) has 64 subgroups.
Proof

Now that we have an understanding of how each subgroup is generated, and know that the

formula works for S; through Sg, | will prove that S,, = 7(n) + o(n)} for any given n. The proof for this
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consists of two parts: a) prove that 7(n) represents the number of subgroups that only contain rotations

and b} prove that a{(n) represents the number of subgroups that contain reflections.

a.

By definition, 7{n) denotes the number of positive divisors of a positive integer n. Let d
and n represent positive integers such that d is a divisor of n. Since d is a divisor of n
then there exists an m such that m=n/d. p? will generate the closed set

{p?, p2¢,p3a, . pn=d oM} of rotations. In order for this closed set generated by p¢ to
be a subgroup, it must contain the inverse for every element in the set using properties
of exponents, p@ - p"~® = p" = g, p?d . pn2d g p3d. ph3d = ¢ .. Because the set
generated by p? is closed and contains the inverse of each element, then the set
generated by p¢ is a subgroup. This demonstrates that every power of p which isa
divisor of n will generate a subgroup of rotations. Also, any multiple of d that is not also
a divisor of n will generate the same subgroup as p?, and any power of p that is
relatively prime to n will generate the same subgroup as p. In conclusion, the number of
subgroups of D(n) that only contain rotations is equal to the number of divisors of n
which can be symbolized by (n).

By definition, ¢(n) is the sum of the positive divisors of n. { want to prove that o{n}
represents the number of subgroups that contain reflections. Let the variables z, nand d
represent positive integers such that d is a divisor of n, o(n)=z+d, and 0 <a;<d (a=1,2,..,
d). The subgroups generated by p and p®@ can be listed as;

{p% p%d, ... €, 0,p%0,p%48, ..}, {p%, p?%, ..., &, p8,p?710, ...},

{p%,p24, .. & p%0,p%*%0, ..}, .., {p%, 0%, ..., 6, p9728, p2?720, ...}, Each subgroup
generated by p¢ and p® 6 will contain a specific element from the set

{8, 08,026, ..., p?~16}. This set has a total of d elements which means that each p? and

p®i@ will generate d subgroups that contain reflections; therefore, the number of
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subgroups of D{n) that contain reflections is equal to the sum of the divisors of n. Since
7(n) represents the subgroups only containing rotations and o(n) represents the

subgroups containing reflections, then S, = 1(n) + a(n) for any given n.

Extension of §,,

In this section | will discuss a few properties that seem to arise from the table that represents 53

through Syqq. First | will investigate the number of subgroups represented by S, k. Since nis an integerin

okt
the form 2%, then a(2") can be represented as the geometric series 142+4+8+16+,.+25= i«-:%r" =

2%*1 — 1, and t(2") is equal to k+1; therefore, S« = 2¥*1 + k. For example, S3,=2545=64+5=69 can be

checked using the table below and works for any n given that n is in the form 2%,

When n is a prime number it will result in a pattern. Suppose n is some prime number, then
S,={1+n}+ 2=n+3; hence, S19=20+2=22. | conjecture that the difference of two primes is equal to the
difference of the number of subgroups for those prime numbers. The proof of this begins by denoting
two prime numbers as n, and n,. As stated earlier, S, — 5y, is equal to the difference of {n,+3) and
(n1+3) which simplifies to n, - ny; therefore, the difference of two primes is equal to the difference of the

number of subgroups for those prime numbers. For example, Ssg ~51,=62-20=42=59-17.

Another interesting pattern arises when S, is odd. The table demonstrates that Sg, Sis, Sz, Sso,
Sz, and Sqg are the only times in which S is odd in the table below. Because the sequence 8, 18, 32, 50,
72, and 98 can be expressed with the formula 2x*+4x+2, where x is a positive integer, then Sy,2. 4,42

will result in an odd number. The only time that S; through S;g will result in a prime number is when n is

equal to 8.

The table below demonstrates that there are many dihedral groups that have the same number

of subgroups. For example, D{4) and D(7) have ten subgroups. This can be shown using the formula
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S, = 7(n) + a(n). The number of subgroups of D(4) can be represented as, Sy = t(4) + g(4) =3 +
14+24+4=10,and Sy = (7)) + o(7) =2+ 1 + 7 = 10.Since, t(7) + o(7) = 1(4) + a(4), then S; is
equal to S4. The mathematics behind this project could be extended to finding other groups D{n) and

D{m) such that S, and S, are equal to each other, but | will not pursue that here.

n t{n) | o{n) Sa n t{n} | a(n) Sn n t(n) | o{n} Sn

3 2 4 6 35 4 48 | 52 65 4 84 | 88

4 3 7 10 36 9 91 | 100 66 8 | 144 | 152
5 2 6 8 37 2 38 | 40 67 2 68 | 70

6 4 | 12 | 16 38 4 | 60 | 64 68 6 | 126 | 132
7 2 8 | 10 39 a | 56 | 60 69 4 | 96 | 100
8 4 | 15 | 19 a0 | 8 | 90 | 98 70 | 8 | 144 | 152
9 3 13 16 41 2 42 | 44 71 2 72 | 74

10 4 18 | 22

n . 5 " 42 8 9 | 104 72 12 | 195 | 207
12 6 TREEY 43 2 44 | 46 73 2 24 | 76

3 5 12 16 44 6 84 | 90 74 4 | 114 | 118
14 1 Y Y 45 6 78 | 84 75 6 | 124 | 130
15 a o4 | 28 46 4 72 | 76 76 6 | 140 | 146
16 [ 31 36 47 2 43 50 77 4 96 100
17 2 18 | 20 48 10 | 124 | 134 78 8 | 168 | 176
18 6 39 | 45 49 3 57 | 60 79 2 80 | 82

19 2 20 22 50 6 93 99 80 10 | 186 | 196
20 6 42 48 51 a4 72 76 81 5 | 1211 126
21 4 | 32 | 36 52 6 | 98 | 104 82 4 | 126 | 130
22 | 4 | 3% | 40 53 2 | s4 | 56 83 2 | 84 86

23 2 24 | 26 54 8 | 120 | 128 84 12 | 224 | 236
zg i 22 gi 55 4 72 | 76 85 4 | 108 | 112
5 3 T 56 8 | 120 | 128 86 4 | 132 | 136
> p 20 | 1 57 4 80 | 84 87 4 | 120 | 124
58 c e T 62 58 4 90 | 94 88 8 | 180 | 188
79 2 30 1 32 59 2 60 | 62 89 2 90 | 92

30 3 75 | 8o 60 12 | 168 | 180 90 12 | 234 | 246
31 2 32 34 61 2 62 | 64 91 4 | 112 | 116
32 6 63 | 69 62 4 96 | 100 92 6 | 168 | 174
33 4 48 52 63 6 | 104 | 110 93 4 | 128 | 132
34 4 54 58 64 7 127 | 134 94 4 144 | 148
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n t(n) | a(n) S, n t©(n) : o(n) Sn n t{n) | o{n) S
85 4 120 124 97 2 98 100 99 6 156 162
96 12 252 264 98 6 171 177 100 9 217 | 226

Bringing the Dihedral Groups D{n) into the Classroom

An interesting aspect of this project is that | take the geometric concepts of the symmetries of
regular polygons (all of which are the elements of D{n)} and utilize abstract algebra by investigating the
number of subgroups of the dihedral group D{n). The research closes nicely with a formula that utilizes
basic number theory properties. Rather than applying abstract algebra and number theory concepts,
geometric principles will be applied throughout the innovation of this project. The overarching goal of
this project is to allow high school students the opportunity to work with complex mathematical topics

that are more commonly found in undergraduate courses.

This present innovation begins with defining line of symmetry, rotational symmetry and the
center of symmetry. Students will be asked to determine the number of line symmetries and rotational
symmetries in a number of figures. In addition, students will be asked to create a mapping for each of
the symmetries and list the combinations of symmetries that result in the identity or original figure. The
tasks that students will complete during the activity entail identifying how many lines of symmetry and
rotations of symmetry each figure contains, creating a mapping for each of the symmetries and listing
the combination of symmetries which result in the identity. This activity also includes an extension in

which students identify the planes of symmetry and the rotational symmetries of a three-dimensional

figure.

The activity includes leveled learning goals to encourage all students to strive for the chance to
achieve a level of success. The target learning goal for this lesson requires students to form conclusions

about the combination of symmetries that result in the identity, like p, followed by p, followed by pin
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D(3). In addition to the target learning goal there are two simplified learning goals; the first asks
students to identify the number of symmetries in each figure, and the second requires students to
create a mapping for each of the symmetries. The complex learning goal requires students to investigate

the similarities and differences of the three-dimensional and two-dimensional figures.

The target and simplified learning goals will be assessed using an equilateral triangle, a six leaf
flower and two other figures; both containing lines of symmetry and rotational symmetries. The
complex goal will be assessed using a regular cube. For this assessment, students will replace lines of
symmetry with planes of symmetry, and rather than use a point to rotate the figure, students will use a
line. Since all of the elements in each of the dihedral groups D(n) contain each of the symmetries ofa
regular n-sided polygon, this lesson will require students to find all of the symmetries of an equilateral
triangle and to extend it to figures which aren’t polygons. Although the mathematics behind this project
is intended to find the number of subgroups of D(n}, the symmetries that each dihedral group D{n)

contain can be found using figures which are not regular n-sided polygons.

The lesson plan template is a requirement for teachers to use in Weld County School District 6.
Also, this section includes the worksheet is designed to measure a student’s ability to reach each

learning goal as explained.

Topic: Grade/Class: Date;
Identifying Symmetries 10" Grade/ Geometry 3-27-14
Standards;

Experiment with transformations in the plane

HS.G.CO.2 - Represent transformations in the plane using, e.g., fransparencies and geometry software; describe
transformations as functions that take points in the plane as inputs and give other points as outputs. Compare
transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

HS.G.CO.3 - Given a rectangle, parallelogram, trapezoid, or regutar polygon, describe the rotations and reflections
that carry it onto itself. Visualize relationships between two-dimensional and three dimensional objects.

Visualize the relationships between two-dimensional and three-dimensional objects
HS.G.GMD.4 - [dentify the shapes of two-dimensional cross-sections of three dimensicnal objects, and identify three-
dimensional objects generated by rotations of two-dimensional objects.




Miller 24

{Common Core State Standards Initiative, 2013}

Content Objective(s): Language Objective(s):
s Target Learning Goal- Students will be e Students will be able to write a clear
able to form conclusions of how many conclusion explaining the relationship
combinations of symmetries will result between the symmetries of a two-
in the identity. dimensional figure and a three-dimensional
» Simpler Goal- Students will be able to figure.
identify the number of symmetries s Students will be able to express each
each figure has. symmetry in unity.

e Simpler Goal 2- Students will be able
to create a mapping for each of the
symmetries.

» Complex Learning Goal- Students will
investigate what the similar and
differing features of three dimensional
and two dimensional figures are.

Key Vocabulary:

rotational symmetry, line of symmetry, mapping, and identity

Essential Question(s):

How many symmetries does a cube have?

Time: Instructional Techniques & Activities:
{WICR strategies can be integrated throughout)
Introduce/Launch/Engage:
s  Warm-Up
o List or draw ali of the symmetries of the flag below
5-10 r
minutes

VAIN

*  Give students 5 minutes
o Have students discuss their answers. Try to find various students to write
up the symmetries.
»  Make a column for reflective symmetry and rotational symmetry
o Discuss what it means to have all of the symmetries listed. (8 total)
o Discuss the objectives of the day
o Target Learning Goal- Students will be able to form conclusions of how
many combinations of symmetries will result in the identity.
o Simpler Goal- Students will be able to identify the number of symmetries
each figure has. Simpler Goal 2- Students will be able to create a
mapping for each of the symmetries.
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o Complex Learning Goal- Students will be able to investigate what the
similar and differing features of three dimensional and two dimensional
figures are.

30-40
minutes

Teacher/Explore:
s Hand out the activity sheet to the class
¢ Have students cut out each figure to use as a manipulative.
o Have students label each vertex.
s Define rotational symmetry and line of symmetry.

o Thisis included on the student worksheet.

o Doa“read aloud” and have students annotate the definitions so that
they understand what each symmetry represents.

o Tie the definitions to the warm-up if needed

e Allow students to explore the symmetries of the equilateral triangle with their
groupn.

o Asthe class finishes the first section lead classroom discourse in which
students discuss/agree upon how many rotational symmetries (3) and
line of symmetries (3} the triangle has

»  This uses the fact that the order of D{3) is equal to 6 or 2n,
wherenis 3

= Make the connection and try to formulate why there are 6
symmetries,

o Introduce the mapping notation

Ex. A 120° counter clockwise rotation can be represented as a two

line matrix (le‘;), where a=>¢2b->a.

B 0

= Be sure to identify that the originai triangle can be mapped to
any symmetry identified that exists.

» |fatriangle is rotated 120° clockwise, then a—=¢, b>aand ¢>b.

* Have students create all of the mappings

= Have students come to the board to list all of the mappings.

o Define Composition
= Be sure to explain that we can operate each of the symmetries

together.
»  Forexample, a 120° rotation followed by a 120° rotation will

result in a 240° rotation.
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»  Explain that the goal is to find the list of symmetries which result
in the identity in 1, 2, or 3 moves.

o Extension question- How many lists of symmetries are there? Are there

more?
¢ Repeat for each figure

o Note that the worksheet asks students to label those vertices which are
necessary. Be sure students only label the vertices which are necessary
to identify all of the symmetries. ' o

o Have students share their results for each figure.

o Ask students if the symmetries of the non-polygon figures share the
same symmetries of some n-sided polygon.

Close/Summarize/Explain:

5-10 e lead classroom discourse about problem number 5

minutes o Why does the question ask for planes of symmetry?
o How do the symmetries of a cube relate to the symmetries of a
square?

o Canvyou list all of the symmetries?
o Create a mapping for all of the symmetries.
* Have students conclude how a 2-dimensional object can be related to a 3~
dimensional object
o Give students objects that represent cubes (die, books, hins, etc.}
= Suggest that students use these figures to help guide or check
their solutions contained in their writing.
o Choose students to discuss their conclusion with the class.
o Emphasize that the symmetries and patterns utilized in this lesson can
be applied to more than 2-dimensional figures and to other branches

of mathematics.

Analysis of Innovation

The data collected from this analysis was provided by twenty-seven 10" grade students in
Geometry during a 50 minute sophomore-leveled class. Based upon what students had previously

learned about line and rotational symmetry, | found that the majority of the class demonstrated success
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throughout the warm-up and launch of this lesson. Time restraints forced me to use questions two
through four as extension problems for students who finished early or would benefit from extra

practice. The analysis of questions 1 through Se will now follow.

The target learning goal for this lesson requires students to form conclusions about how many
cambinations of symmetries result in the identity. The first simplified learning goal asks students to
identify the number of symmetries in each figure. The second simplified learning goal requires students
to list the permutations for each of the symmetries. The complex learning goal requires students to
investigate the similarities and differences of the three-dimensional and two-dimensional figures. On
the first page of the worksheet questions a and b are used to identify which students could meet the
first simpler goal, question ¢ is used to identify which students can meet the second simpler goal,
questions d and e are used to identify which students can meet the target goal, and question 5e is used

to identify which students can meet the more complex goal.

Since this was an obtrusive formative assessment, | chose to use Marzano’s method of collecting
data to determine the pattern of responses for a particular student {Marzano, Formative Assessment &
Standards-Based Grading, 2010). The cading scheme | used for this analysis is; C = totally correct, | =
incorrect, and P = partially correct, This coding scheme allowed me to compile the data for the entire
class in a manner which was easy to comprehend. An example of my coding scheme for a particular
student’s work is included below. This student demonstrated that she has met the expectations for the
simpler goals, approaching the target goal, and also approaching the more complex goal. This student
did not determine all of the combinations of symmetries that would yield the original triangle. She

explained very clearly how the reflections of a square translate to a cube, but did not include how the

rotations of a square translate to a cube,
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Question | Code
A C
B C
C C
D P
E |
Se p

I compiled the entire class’s data in Excel so that | could create a bar graph to represent the
percentage of students who were able to meet or exceed each learning goal. As identified in the chart
below, the entire class determined how many lines of symmetry the triangle contained, in contrast to
the eighty-percent of the students that determined the rotational symmetries. Every student who
answered question b incorrectly wrote down that the triangle has six rotational symmetries. | found that
some of these students double counted rotational symmetries by including both counter and clockwise
rotations. The data also demonstrates that nearly seventy-percent of students met the second simpler
goal, consequently nearly thirty percent of students approached this learning goal. The students who
scored a PC on this question wrote the permutations correctly, but did not include the permutation for
each of the symmetries. A little over eighty six-percent of the class answered question d partially
correct. The big problem with students’ responses for question d is that they were unable to list all
symmetries, or explain if there are any more combinations of symmetries that yield the identity.
Thinking back to how long it took me to determine the number of subgroups of D(3) through D(8), |
understand that this is not something that can be done quickly. With that being said, | conjecture that
given more time; the number of students that get questions d and e totally correct would increase.

Furthermore, it is my belief that given the opportunity students utilizing manipulatives during this lesson
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would outperform students without manipulatives. Question 5e provided a range of responses. A little
over fifty percent of the class answered this question totally incorrect, Forty-four percent of the
students were partially correct on this question. Of the partially correct responses, seven omitted the
rotational symmetries, five double counted symmetries, and three demonstrated a misunderstanding of
a cube. One student stated that a cube contained four faces that are squares, while others provided
general statements of how a cube is composed of square faces, and did not answer the question

pertaining to symmetries.

Analysis of Student Data

w 100.00% -
T
§ 80.00%
=
¥ 60.00% -
g #® [ncorrect
W 40.00% -
g 0 # Partially Correct
w
o 20.00% -
3 # Correct
a.
0.00% ---
a b ¢ d . c
Question
Question [ PC C
4 0.00% 0.00% | 100.00%

11,11% ;. 3.70% | 85.19%
0.00% | 29.63% | 70.37%
0.00% | 85.19% | 14.81%
66.67% | 29.63% | 3.70%
51.85% | 44.44% | 3.70%

wr o o N o

The intention of this lesson was not to teach students the symmetries of various figures, but to
teach students to create and list the combinations of permutations which yield the identity. The lesson
was intended to encourage students to go through a process | experienced when finding the subgroups

of D(n). Questions d and e inadvertently asked students to go through the same process | did when
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determining the number of subgroups of D(3) through D(8), consequently it was not reasonable to think
that students could achieve this in 50 minutes. Extending this lesson over two to three class periods
would increase the number of students that meet the target and more complex learning goals of this
lesson. This lesson effectively exposed students to permutations and allowed them to list combinations
of permutations that yielded the identity. The result of Question 5e revealed that students were able to
extend some of the symmetries of a square to a cube. The majority of the class understood that a line of
symmetry of a square will extend to a plane of symmetry with a cube. Students demanstrated that they
did not understand that a line of symmetry on a face of the cube will share the same plane of symmetry
with the cubes opposing face’s iine of symmetry. The revisicns | have included in the lesson plan is to
give each student a cube or die to visualize the symmetries of a cube, give students cut-outs for each
figure, and allow students to have more time investigating the combination of permutations that yield
the identity. | conjecture that these revisions will improve each student’s ability to reach the learning

goals associated with this lesson.

Conclusion

The innovation of bringing the dihedral groups D{n) into the cfassroom allowed me to expose
students to the elements of D(n) as well as the process | used to create each subgroup of D{n). The data
that | collected from students allowed me to understand that in a 50 minute class period students were
able to identify each of the symmetries, list various permutations, and identify some combination of

permutations that yield the identity.

In order to determine the number of subgroups for D(3) through D(8), it was impartant to
understand the pattern embedded in the problem. | found that the number of subgroups of D{n} is
equal to the number of factors of n plus each positive factor of n. In my classroom | emphasize the value

of determining or exploring patterns in mathematics. D(8) allowed me to realize that each subgroup of
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D{n) was generated by some p" and p®@ such that k is a divisor of n and Osa;sk. As | have stated
throughout this paper, the emphasis of this project is not the formula that determines the number of
subgroups of D(n), but rather the connection this project makes through the various fields of
mathematics. Each subgroup of D{n) is generated by specific symmetries contained in D{n), the elements
of D{n} are the symmetries of thé regular n-sided polygon, and the numbér of subgroups of D{n) is
determined by the number of positive divisors of n. This project has demonstrated that a basic
geometric property can be approached through group theory and expressed as a formula using number

theory. Ultimately, my research has led me to the formula S, = t(n) + a(n).
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Student Cut Quts

Cut along the dotted lines.

Equilateral Triangle Figure 3
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Figure 4
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{dentifying Symmetries

Definition:

A figure in the plane has line symmetry if the figure can be mapped onto itself by a

reflection in a line. This line of reflection is a line of symmetry.

« Afigure in a plane has rotatiunalssvrh&letrv if the figure can be mapped onto itself by a

rotation of 180° or less about the center of the figure. This point is the center of
symmetry. Note that the rotation can be clockwise or counterclockwise,

{Larson, Boswell, Kanold, & Stiff, 2007)

¢ The symbol “«* means composition or “followed by” left to right and every rotation is clockwise

i.e. 120° 12090120°=(22¢)(22E)(206)(%0€) iy which a>c>b>a, b>adedb, cdbdadc

cab/ \cab/ \cab abc

1. Below is an equilateral {regular) triangle.

a.

e,

How many lines of
symmetry does the triangle

contain?
A

How many rotational
symmetries does the

triangle contain? B

The permutation {ach) meaning(ggl‘;), corresponds to a clockwise rotation of 120° of
the triangle above. List each permutation for the symmetries above, using the

notation.

List all of the combinations of symmetries that yields the original triangle using:

i. 1 combination iii. 3 combinations

ii. 2 combinations

Are there any other transformations that return the triangle to its original position

without repeating any of the operations above?
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2. Use the figure to the right to answer the questions below. Be sure to label each of the
symmetries.
a. How many lines of
symmetry does the figure

contain?

b. How many rotational
symmetries does the figure

contain?

c. List each permutation for the symmetries above, using the notation,

d. List all of the combinations of symmetries that yields the original triangle using:

i. 1 combination iv. 4 combinations
ii. 2 combinations v. 5 combinations
iii. 3 combinations vi. & combinations

e. Are there any other transformations that return the figure to its original position

without repeating any of the operations above?
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Use the figure to the right to answer the questions below. Be sure to label each of the
symmetries.
a. How many lines of
symmetry does the figure

contain?

b. How many rotational
symmetries does the figure

contain?

¢. List each permutation for the symmetries above, using the notation.

d. List all of the combinations of symmetries that yields the original triangle using:

i. 1 combination iii. 3 combinations

fi. 2 combinations iv. 4 combinations

e. Are there any other transformations that return the figure to its original position

without repeating any of the operations above?
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4. Use the figure to the right to answer the questions below. Be sure to label each of the
symmetries.
a. How many lines of
symmetry does the figure

contain?

b. How many rotational

symmetries does the figure

contain?

¢. Llist each permutation for the symmetries above, using the notation.

d. List all of the combinations of symmetries that yields the original triangle using:

i. 1 combination iii. 3 combinations

ii. 2 combinations iv. 4 combinations

e. Are there any other transformations that return the figure to its original position

without repeating any of the operations above?
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5. Use the regular cube to the right to answer the questions below. Be sure to label each of the

symmetries,

a. How many planes of symmetry does the figure contain?

b. How many rotational symmetries does the figure contain?

c. List each permutation for the symmetries above.

d. List all of the combinations of symmetries that yields the original triangle using:

e. Briefly describe how the symmetries of a 2-dimensional figure can be applied to a 3-

dimensional figure. Be sure to refer to the example above.
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